
International Journal of Marketing and Technology
Vol. 8 Issue 5, May 2018,

ISSN: 2249-1058 Impact Factor: 6.559

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial

Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s

Directories of Publishing Opportunities, U.S.A

1 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Configure JMeter in Vaadin Application

Sukhendu Mukherjee

 Abstract

 This article describes how we can use JMeter for any

vaadin application.JMeter may be used to test

performance both on static and dynamic

resources,Webdynamicapplications. It can be used to

simulate a heavy load on a server, group of servers,

network or object to test its strength or to analyze overall

performance under different load types

Apache JMeter features include:

 Ability to load and performance test many

different applications/server/protocol types:

o Web - HTTP, HTTPS (Java, NodeJS,

PHP, ASP.NET, …)

o SOAP / REST Webservices

o FTP

o Database via JDBC

o LDAP

o Message-oriented middleware (MOM) via

JMS

o Mail - SMTP(S), POP3(S) and IMAP(S)

o Native commands or shell scripts

o TCP

o Java Objects

Keywords:

Vaadin;

JMeter;

Load Testing;

Performance Testing;

.

CTO Tiny Planet Inc

 ISSN: 2249-1058 Impact Factor: 6.559

2 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

1. Introduction

Vaadin is primarily a server-side framework. To test vaadin application performances we can use

JMter for that.UsingJMeter we can do load test the application.It will help us to find out how the

vaadin application will be performed in production with heavy load of data.

2. Research Method

As a part of load testing we took our existing vaadin application and configured accordingly.

Get the latest JMeter

Download JMeter from http://jmeter.apache.org/download_jmeter.cgi

Configure JMeter

Unzip the apache-jmeter-x.x.x.zip file.

Edit JMETERHOME/bin/jmeter.bat (or jmeter.sh) and check that the JVM memory parameters

are ok (e.g. set HEAP=-Xms512m -Xmx1500m -Xss128k). The maximum heap size (-Xmx)

should be at least 1024m. I would also recommend that the thread stack size is set to 512k or

below if a large number of threads is used in testing.

Start JMeter

E.g. double clicking jmeter.bat

Configure Test Plan and WorkBench

Right click the WorkBench icon and select 'Add' → 'Non-Test Elements' → 'HTTP(S) Test

Script Recorder'. Edit the Recorder parameters and set Port: to e.g. 9999 (you could leave it to

8080 if your web application servers do not use the port 8080). Typically requests related to

loading static web content like css files and images are excluded from the load test. You can use

'Url Patterns to Exclude' section of the recorder to define what content is excluded. For instance

to exclude css files add following pattern: .*\.css

http://jmeter.apache.org/download_jmeter.cgi

 ISSN: 2249-1058 Impact Factor: 6.559

3 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Right click the Recorder icon and select 'Add' → 'Timer' → 'Uniform random timer'. Configure

timer by setting the Constant Delays Offset into ${T}. This setting means that JMeter records

also the delays between the http requests. You could also test without the timer but with the timer

your test is more realistic.

Optionally we could also add 'View Result Tree' listener under the Recorder. With 'View Result

Tree' listener it is possible to inspect every recorded request and response.

Note since JMeter you can do this in one step using menu item "Templates…" and

selecting "Recording" template.

 ISSN: 2249-1058 Impact Factor: 6.559

4 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Next, configure the Test Plan. Add a 'Thread Group' to it and then add a 'Config Element' →

'HTTP Cookie Manager' to the thread group. Set Cookie policy of the cookie manager to be

'compatibility'. Remember also to set the "Clear cookies each iteration" setting to 'checked'.

Add also a 'Config Element' → 'HTTP Request Defaults' into Thread group.

We could also add a 'Config Element' → 'User Defined Variables' and a 'Logic Controller' →

'Recording Controller' into Thread Group.

JMeter should now looks something like the screenshot below:

Configure Vaadin application

Disable the xsrf-protection

In Vaadin have to disable the xsrf-protection of your application or otherwise the JMeter test

may fail.

If we use web.xml in your Vaadin 7 project, add the following context-parameter in the web.xml

or optionally add it as an init parameter just like in the Vaadin 6 project below.

<context-param>

<param-name>disable-xsrf-protection</param-name>

 ISSN: 2249-1058 Impact Factor: 6.559

5 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

<param-value>true</param-value>

</context-param>

If we use annotation based (Servlet 3.0) Vaadin servlet configuration, you can currently (in

Vaadin 7.1.11) either fall back to Servlet 2.4 web.xml configuration or set the parameter value

for 'disable-xsrf-protection' as a java.lang.System property before the

Vaadin’sDefaultDeploymentConfiguration is loaded. This can be done for example by extending

VaadinServlet class. At the end of this Wiki article there is an example servlet (JMeterServlet)

that implements this functionality. See the example code below for how to replace the default

VaadinServlet with your custom VaadinServlet in the UI class.

public class YourUI extends UI {

@WebServlet(value = "/*", asyncSupported = true)

@VaadinServletConfiguration(productionMode = false, ui = YourUI.class)

public static class Servlet extends JMeterServlet {

 }

 @Override

protected void init(VaadinRequest request) {

 //...

 }

Important! Remember to enable the protection after the testing is done!

Disabling syncId happens with similar parameter

<context-param>

<param-name>syncId</param-name>

<param-value>false</param-value>

</context-param>

If we want to do the above with Java Servlet 3.0 annotations, use the following:

initParams = {

@WebInitParam(name = "disable-xsrf-protection", value = "true"),

@WebInitParam(name = "syncIdCheck", value = "false")}

 ISSN: 2249-1058 Impact Factor: 6.559

6 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Use debug id:s within your Vaadin application

Normally a Vaadin application sets a sequential id for each user interface component of the

application. These ids are used in the ajax-requests when the component state is synchronized

between the server and the client side. The aforementioned id sequence is likely the same

between different runs of the application, but this is not guaranteed.

There no more exists a setDebugId() method; instead there is setId() method. Unfortunately this

method won’t set component ids used in the ajax-request. Therefore, by default, JMeter tests of a

Vaadin 7 application are not stable to UI changes. To overcome this problem you can use our

JMeterServlet (see the end of this article) instead of the default VaadinServlet. When using the

JMeterServlet component ids are again used in the ajax requests. See example above for how to

replace default VaadinServlet with JMeterServlet. For additional information, see the Vaadin

ticket #13396.

Use named windows in your application

Setting the name for the Windows in the Vaadin (< 6.4.X) application is important since

otherwise these names are randomly generated. Window name could be set using the setName()-

method.

Configure your browser

Since JMeter is used as a proxy server, you have to configure the proxy settings of your browser.

You can find the proxy settings of Firefox from Tools → Options → Connections → Settings:

'Manual proxy configuration'. Set the correct IP of your computer (or 'localhost' string) and the

same port that you set into proxy server settings above.

Start recording

Start web application server. Start the proxy server from the JMeter. Open the URL of your web

application into the browser configured above. You should append ?restartApplication to the

URL used when recording the tests to make sure that the UI gets initialized properly. Thus the

URL becomes something like (http://localhost:8080/test/TestApplication/?restartApplication). If

everything is ok your web application opens normally and you can see how the different HTTP

requests appear into JMeter’s thread group (see screenshot below). When you have done the

recording, stop the proxy server.

https://vaadin.com/api/com/vaadin/ui/Component.html#setId(java.lang.String)
http://dev.vaadin.com/ticket/13396
http://localhost:8080/test/TestApplication/?restartApplication

 ISSN: 2249-1058 Impact Factor: 6.559

7 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Performance testing

Clean up the recorded request

Before you start the test, you may have to delete the first timer object which is located below the

first HTTP request in the thread group since its time delay may be unrealistically big (see the

screenshot above). It is also very much recommended to check the recorded data and delete

all unessential requests.

Detecting Out of Sync errors

If test results in the application being in an Out of Sync error state it is not by default detected by

JMeter (because the response code is still HTTP/1.1 200 OK). To make an assertion for detecting

this kind of error you should add a Response Assertion to your test plan. Right-click on the

thread group and select Add → Assertions → Response Assertion. Configure the assertion to

assert that the Text Response does NOT contain a pattern "Out of sync".

Optional parameterization of the request

Sometimes, it is useful to parameterize the recorded requests. Parameterization of a request is

easily done in JMeter:

1. add a "User Defined Variables"-element into the first place of your Test Plan.

2. Copy paste the whole parameter value of wanted UIDL-request into the newly made

variable (e.g. PARAM1).

3. Replace the value of the UIDL-request with the parameter reference (e.g. ${PARAM1}).

 ISSN: 2249-1058 Impact Factor: 6.559

8 International Journal of Marketing and Technology

http://www.ijmra.us, Email: editorijmie@gmail.com

Start testing

Now, it is time to do the actual testing. Configure the thread group with proper 'Number of

Threads' (e.g. 100) and set also the 'Ramp-Up Period' to some realistic value (e.g. 120). Then,

add e.g. 'Listener' → 'Graph Results' to monitor how your application is performing. Finally, start

the test from the Run → Start.

Stop on Error

When you are pushing your Vaadin application to the limits, you might get into a situation where

some of the UIDL requests fail. Because of the server-driven nature of Vaadin, it’s likely that

subsequent requests will cause errors like "Warning: Ignoring variable change for non-existent

component", as the state stored on the server-side is no longer in sync with the JMeter test script.

In these cases, it’s often best to configure your JMeter thread group to stop the thread on sampler

error. However, if you have configured your test to loop, you might want to still continue (and

ignore the errors), if the next iteration will start all over again with fresh state.

3. Results and Analysis

As a result we will be able to setup for any vaadin application that will help users to measure

application scalability and sustainability.Users can check the output of the load test and report

also.

4. Conclusion

Implementing JMeter for vaadin application to get load testing and scalability report for

application to how the application will run in production.

